티스토리 뷰

PDF: http://ams.allenpress.com/pdfserv/10.1175%2F1520-0442(2001)014%3C3433:EOMAAO%3E2.0.CO%3B2

doi: 10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
Journal of Climate: Vol. 14, No. 16, pp. 3433–3443.

Estimates of Meridional Atmosphere and Ocean Heat Transports
Kevin E. Trenberth and Julie M. Caron

National Center for Atmospheric Research, Boulder, Colorado


(Manuscript received November 8, 2000, in final form February 21, 2001)


ABSTRACT

New estimates of the poleward energy transport based on atmospheric reanalyses from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) and the European Centre for Medium-Range Weather Forecasts are presented. The analysis focuses on the period from February 1985 to April 1989 when there are reliable top-of-the-atmosphere radiation data from the Earth Radiation Budget Experiment. Annual mean poleward transports of atmospheric energy peak at 5.0 ± 0.14 PW at 43°N and with similar values near 40°S, which is much larger than previous estimates. The standard deviation of annual and zonal mean variability from 1979 to 1998 is mostly less than 0.15 PW (1%–3%). Results are evaluated by computing the implied ocean heat transports, utilizing physical constraints, and comparing them with direct oceanographic estimates and those from successful stable coupled climate models that have been run without artificial flux adjustments for several centuries. Reasonable agreement among ocean transports is obtained with the disparate methods when the results from NCEP–NCAR reanalyses based upon residually derived (not model-generated) methods are used, and this suggests that improvements have occurred and convergence is to the true values. Atmospheric transports adjusted for spurious subterranean transports over land areas are inferred and show that poleward ocean heat transports are dominant only between 0° and 17°N. At 35° latitude, at which the peak total poleward transport in each hemisphere occurs, the atmospheric transport accounts for 78% of the total in the Northern Hemisphere and 92% in the Southern Hemisphere. In general, a much greater portion of the required poleward transport is contributed by the atmosphere than the ocean, as compared with previous estimates.